Encapsulação de extratos do fruto da Dillenia indica Linnaeus em nanopartículas de quitosana e em nanopartículas de ácido poli(láctico-co-glicólico)
Data
2021-11-30
Tipo
Dissertação de mestrado
Título da Revista
ISSN da Revista
Título de Volume
Resumo
O objetivo do presente estudo foi encontrar uma maneira de curar o câncer melanoma sem, com isso, causar morte celular de tecidos saudáveis. Para tal, foram feitas extrações do fruto da Dillenia indica Linnaeus e suas caracterizações, bem como a encapsulação em nanopartículas de PLGA e em nanopartículas de quitosana seguido da avaliação da citotoxicidade in vitro em B16F10-Nex2. Os extratos da casca e da polpa de Dillenia indica L. foram obtidos em n-hexano, acetato de etila, 1-butanol, etanol e metanol e fracionados em água. As frações foram testadas in vitro quanto à sua toxicidade em células B16F10-Nex2 e HaCaT e caracterizadas por FTIR e teste de Folin-Ciocalteu. Uma nova extração da polpa em metanol foi realizada e fracionada em água e em acetona, que foram caracterizadas por Folin-Ciocalteu, HPLC, FTIR e citotoxicidade in vitro em células B16F10-Nex2 e MEF. Foi constatada a presença do ácido betulínico na fração em acetona e, de fenólicos, em ambas as frações. A fração em acetona foi encapsulada em PLGA pelo método de nanoprecipitação, testada em B16F10-Nex2 e submetida à teste de degradação. A fração aquosa foi encapsulada em quitosana pelo método de gelificação iônica, testada em B16F10-Nex2 e submetida à teste de liberação. A fração em acetona apresentou seletividade à B16F10-Nex2 em relação à MEF e a fração aquosa apresentou comportamento inverso, porém não apresentou toxicidade à HaCaT. A incidência de luz UV em B16F10-Nex2 após pré-tratamento com a fração aquosa mostrou aumento da viabilidade celular. Houve aumento significativo na toxicidade em B16F10-Nex2 após a associação das frações com os biopolímeros. O perfil de liberação da fração aquosa encapsulada em quitosana foi modelado matematicamente e apresentou melhor ajuste segundo o modelo de Korsmeyer-Peppas. O estudo de degradação da fração em acetona encapsulada em PLGA mostrou que, para 3818 horas de teste, não houve liberação total dos fenólicos e do ácido betulínico. Apesar da associação dos extratos de Dillenia indica L. com biopolímeros melhorar significativamente sua ação citotóxica em células B16F10-Nex2, a fração em acetona associada ao PLGA mostrou ser o sistema que apresenta maior efeito citotóxico.
The aim of the present study was to find a way to cure melanoma cancer without causing cell death in healthy tissue. To this end, extractions of the fruit of Dillenia indica Linnaeus and their characterizations were performed, as well as encapsulation in PLGA nanoparticles and chitosan nanoparticles followed by the evaluation of in vitro cytotoxicity in B16F10-Nex2. The fruit bark and fruit pulp extracts of Dillenia indica L. were obtained in n-hexane, ethyl acetate, 1-butanol, ethanol and methanol and fractionated in water. The fractions were tested in vitro for their toxicity in B16F10-Nex2 and HaCaT cells and characterized by FTIR and Folin-Ciocalteu test. A new extraction of the fruit pulp in methanol was performed and fractionated in water and acetone, which were characterized by Folin-Ciocalteu, HPLC, FTIR and in vitro cytotoxicity in B16F10-Nex2 and MEF cells. The presence of betulinic acid was found in the acetone fraction and phenolics in both fractions. The acetone fraction was encapsulated in PLGA by the nanoprecipitation method, tested in B16F10-Nex2 and submitted to degradation test. The aqueous fraction was encapsulated in chitosan by the ionic gelling method, tested in B16F10-Nex2 and submitted to the release test. The acetone fraction showed selectivity to B16F10-Nex2 in relation to MEF and the aqueous fraction showed the opposite behavior but did not show toxicity to HaCaT. The incidence of UV light on B16F10-Nex2 after pretreatment with the aqueous fraction showed increased cell viability. There was a significant increase in toxicity in B16F10-Nex2 after the association of fractions with biopolymers. The release profile of the chitosan-encapsulated aqueous fraction was mathematically modeled and presented a better fit according to the Korsmeyer-Peppas model. The degradation study of the acetone fraction encapsulated in PLGA showed that, for 3818 hours of testing, there was no total release of phenolics and betulinic acid. Although the association of Dillenia indica L. extracts with biopolymers significantly improves its cytotoxic action on B16F10-Nex2 cells, the acetone fraction associated with PLGA proved to be the system with the greatest cytotoxic effect.
The aim of the present study was to find a way to cure melanoma cancer without causing cell death in healthy tissue. To this end, extractions of the fruit of Dillenia indica Linnaeus and their characterizations were performed, as well as encapsulation in PLGA nanoparticles and chitosan nanoparticles followed by the evaluation of in vitro cytotoxicity in B16F10-Nex2. The fruit bark and fruit pulp extracts of Dillenia indica L. were obtained in n-hexane, ethyl acetate, 1-butanol, ethanol and methanol and fractionated in water. The fractions were tested in vitro for their toxicity in B16F10-Nex2 and HaCaT cells and characterized by FTIR and Folin-Ciocalteu test. A new extraction of the fruit pulp in methanol was performed and fractionated in water and acetone, which were characterized by Folin-Ciocalteu, HPLC, FTIR and in vitro cytotoxicity in B16F10-Nex2 and MEF cells. The presence of betulinic acid was found in the acetone fraction and phenolics in both fractions. The acetone fraction was encapsulated in PLGA by the nanoprecipitation method, tested in B16F10-Nex2 and submitted to degradation test. The aqueous fraction was encapsulated in chitosan by the ionic gelling method, tested in B16F10-Nex2 and submitted to the release test. The acetone fraction showed selectivity to B16F10-Nex2 in relation to MEF and the aqueous fraction showed the opposite behavior but did not show toxicity to HaCaT. The incidence of UV light on B16F10-Nex2 after pretreatment with the aqueous fraction showed increased cell viability. There was a significant increase in toxicity in B16F10-Nex2 after the association of fractions with biopolymers. The release profile of the chitosan-encapsulated aqueous fraction was mathematically modeled and presented a better fit according to the Korsmeyer-Peppas model. The degradation study of the acetone fraction encapsulated in PLGA showed that, for 3818 hours of testing, there was no total release of phenolics and betulinic acid. Although the association of Dillenia indica L. extracts with biopolymers significantly improves its cytotoxic action on B16F10-Nex2 cells, the acetone fraction associated with PLGA proved to be the system with the greatest cytotoxic effect.