PCA statistical method for classification of sensors
dc.contributor.advisor | Antonelli, Eduardo [UNIFESP] | |
dc.contributor.advisorLattes | http://lattes.cnpq.br/8535325155568005 | pt_BR |
dc.contributor.author | Paula, Jessica Fernandes de [UNIFESP] | |
dc.contributor.authorLattes | http://lattes.cnpq.br/9339565565705439 | pt_BR |
dc.date.accessioned | 2023-03-03T12:27:14Z | |
dc.date.available | 2023-03-03T12:27:14Z | |
dc.date.issued | 2022-11-25 | |
dc.description.abstract | A large number of the global population suffers from infectious diseases, so studies in the health area aimed at identifying these diseases are of great importance. Some diseases have a long immunological window, where antibodies take a long time to be identified. Rapid detection tests are essential for disease control and eradication. A possible identification and classification method uses the statistical analysis performed by the Principal Component Analysis (PCA), through which we can reduce the number of variables and identify the presence of these antibodies. This work aims to classify immunosensors according to the antibody detected, analyzing their responses in relation to impedance and frequency using the PCA statistical method. The study was based on data collected from two immunosensors, HCV sensor and HIV sensor (Hepatitis C virus and Human Immunodeficiency Virus), analyzing their response as a function of frequency. For the PCA statistical method, an interactive laboratory was adopted with Jupyter Notebook, Python, using libraries known as Pandas, Plotly, NumPyand Scikit-learn. This study analyzed several data and variables from the dataset of both sensors to build models with the PCA statistical method, it was possible to separate and classify the HIV and HCV sensors at specific frequencies. The PCA analysis results for the selected datasets showed a relevant classification using PC1 and PC2, with a variance of the original data above 90%. | pt_BR |
dc.description.abstract | Uma grande parte da população mundial sofre com doenças infecciosas, por isso estudos na área da saúde que visem a identificação dessas doenças são de grande importância. Algumas doenças têm uma longa janela imunológica, onde os anticorpos demoram muito para serem identificados. Testes de detecção rápida são essenciais para o controle e erradicação da doença. Um possível método de identificação e classificação utiliza a análise estatística Principal Component Analysis (PCA), por meio da qual podemos reduzir o número de variáveis e identificar a presença desses anticorpos. O objetivo deste trabalho é classificar os imunossensores de acordo com o anticorpo detectado, analisando suas respostas em relação à impedância e frequência utilizando o método estatístico PCA. O estudo foi baseado em dados coletados de dois imunossensores, sensor HCV e sensor HIV (Vírus da Hepatite C e Vírus da Imunodeficiência Humana), analisando sua resposta em função da frequência. Para o método estatístico PCA foi adotado um laboratório interativo com Jupyter Notebook, Python, utilizando bibliotecas conhecidas como Pandas, Plotly, NumPy e Scikit-learn. Este estudo analisou diversos dados e variáveis do conjunto de dados de ambos os sensores para construir modelos com o método estatístico PCA, foi possível separar e classificar os sensores HIV e HCV em determinadas frequências. Os resultados da análise por PCA para os conjuntos de dados selecionados mostraram uma classificação relevante usando PC1 e PC2, com uma variância dos dados originais acima de 90%. | pt_BR |
dc.description.sponsorship | Não recebi financiamento | pt_BR |
dc.emailadvisor.custom | antonelli@unifesp.br | pt_BR |
dc.format.extent | 117 f. | pt_BR |
dc.identifier.uri | https://repositorio.unifesp.br/handle/11600/67178 | |
dc.language | eng | pt_BR |
dc.publisher | Universidade Federal de São Paulo | pt_BR |
dc.rights | info:eu-repo/semantics/openAccess | pt_BR |
dc.subject | PCA | pt_BR |
dc.subject | HIV | pt_BR |
dc.subject | HCV | pt_BR |
dc.subject | sensor | pt_BR |
dc.subject | antibody | pt_BR |
dc.subject | antigen | pt_BR |
dc.subject | statistics | pt_BR |
dc.title | PCA statistical method for classification of sensors | pt_BR |
dc.title.alternative | Método estatístico PCA para classificação de sensores | pt_BR |
dc.type | info:eu-repo/semantics/masterThesis | pt_BR |
unifesp.campus | Instituto de Ciência e Tecnologia (ICT) | pt_BR |
unifesp.graduateProgram | Mestrado Profissional Interdisciplinar em Inovação Tecnológica | pt_BR |
unifesp.knowledgeArea | Processos e Produtos Tecnológicos | pt_BR |
unifesp.researchArea | PCA aplicado a sensores | pt_BR |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- 27_02_2023_Base_REV_7.pdf
- Tamanho:
- 1.93 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
- Dissertação de mestrado
Licença do Pacote
1 - 1 de 1
Carregando...
- Nome:
- license.txt
- Tamanho:
- 5.67 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: