PCA statistical method for classification of sensors

dc.contributor.advisorAntonelli, Eduardo [UNIFESP]
dc.contributor.advisorLatteshttp://lattes.cnpq.br/8535325155568005pt_BR
dc.contributor.authorPaula, Jessica Fernandes de [UNIFESP]
dc.contributor.authorLatteshttp://lattes.cnpq.br/9339565565705439pt_BR
dc.date.accessioned2023-03-03T12:27:14Z
dc.date.available2023-03-03T12:27:14Z
dc.date.issued2022-11-25
dc.description.abstractA large number of the global population suffers from infectious diseases, so studies in the health area aimed at identifying these diseases are of great importance. Some diseases have a long immunological window, where antibodies take a long time to be identified. Rapid detection tests are essential for disease control and eradication. A possible identification and classification method uses the statistical analysis performed by the Principal Component Analysis (PCA), through which we can reduce the number of variables and identify the presence of these antibodies. This work aims to classify immunosensors according to the antibody detected, analyzing their responses in relation to impedance and frequency using the PCA statistical method. The study was based on data collected from two immunosensors, HCV sensor and HIV sensor (Hepatitis C virus and Human Immunodeficiency Virus), analyzing their response as a function of frequency. For the PCA statistical method, an interactive laboratory was adopted with Jupyter Notebook, Python, using libraries known as Pandas, Plotly, NumPyand Scikit-learn. This study analyzed several data and variables from the dataset of both sensors to build models with the PCA statistical method, it was possible to separate and classify the HIV and HCV sensors at specific frequencies. The PCA analysis results for the selected datasets showed a relevant classification using PC1 and PC2, with a variance of the original data above 90%.pt_BR
dc.description.abstractUma grande parte da população mundial sofre com doenças infecciosas, por isso estudos na área da saúde que visem a identificação dessas doenças são de grande importância. Algumas doenças têm uma longa janela imunológica, onde os anticorpos demoram muito para serem identificados. Testes de detecção rápida são essenciais para o controle e erradicação da doença. Um possível método de identificação e classificação utiliza a análise estatística Principal Component Analysis (PCA), por meio da qual podemos reduzir o número de variáveis e identificar a presença desses anticorpos. O objetivo deste trabalho é classificar os imunossensores de acordo com o anticorpo detectado, analisando suas respostas em relação à impedância e frequência utilizando o método estatístico PCA. O estudo foi baseado em dados coletados de dois imunossensores, sensor HCV e sensor HIV (Vírus da Hepatite C e Vírus da Imunodeficiência Humana), analisando sua resposta em função da frequência. Para o método estatístico PCA foi adotado um laboratório interativo com Jupyter Notebook, Python, utilizando bibliotecas conhecidas como Pandas, Plotly, NumPy e Scikit-learn. Este estudo analisou diversos dados e variáveis do conjunto de dados de ambos os sensores para construir modelos com o método estatístico PCA, foi possível separar e classificar os sensores HIV e HCV em determinadas frequências. Os resultados da análise por PCA para os conjuntos de dados selecionados mostraram uma classificação relevante usando PC1 e PC2, com uma variância dos dados originais acima de 90%.pt_BR
dc.description.sponsorshipNão recebi financiamentopt_BR
dc.emailadvisor.customantonelli@unifesp.brpt_BR
dc.format.extent117 f.pt_BR
dc.identifier.urihttps://repositorio.unifesp.br/handle/11600/67178
dc.languageengpt_BR
dc.publisherUniversidade Federal de São Paulopt_BR
dc.rightsinfo:eu-repo/semantics/openAccesspt_BR
dc.subjectPCApt_BR
dc.subjectHIVpt_BR
dc.subjectHCVpt_BR
dc.subjectsensorpt_BR
dc.subjectantibodypt_BR
dc.subjectantigenpt_BR
dc.subjectstatisticspt_BR
dc.titlePCA statistical method for classification of sensorspt_BR
dc.title.alternativeMétodo estatístico PCA para classificação de sensorespt_BR
dc.typeinfo:eu-repo/semantics/masterThesispt_BR
unifesp.campusInstituto de Ciência e Tecnologia (ICT)pt_BR
unifesp.graduateProgramMestrado Profissional Interdisciplinar em Inovação Tecnológicapt_BR
unifesp.knowledgeAreaProcessos e Produtos Tecnológicospt_BR
unifesp.researchAreaPCA aplicado a sensorespt_BR
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
27_02_2023_Base_REV_7.pdf
Tamanho:
1.93 MB
Formato:
Adobe Portable Document Format
Descrição:
Dissertação de mestrado
Licença do Pacote
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
5.67 KB
Formato:
Item-specific license agreed upon to submission
Descrição: