Estudo da temperatura de ponto de névoa em solução de tensoativo não iônico no preparo de emulsões de diferentes matérias-primas em meio aquoso
Data
2021-02-23
Tipo
Trabalho de conclusão de curso
Título da Revista
ISSN da Revista
Título de Volume
Resumo
A temperatura de ponto de névoa (CP, cloud point) é um importante critério de estabilidade para produtos que possuem o tensoativo não iônico como tensoativo principal em sua formulação, como é o caso de muitos produtos denominados como “limpadores de superfície”. Diferente das outras classes de tensoativos, os não iônicos possuem uma característica de diminuir a sua solubilidade quando a temperatura do sistema aumenta, até o ponto que se torna insolúvel. A temperatura de ponto de névoa é muito sensível à adição de outros componentes ao sistema. Por exemplo, no caso dos produtos “limpadores de superfície”, a adição de fragrâncias tende a reduzir a temperatura do ponto de névoa. Entretanto, em diversos produtos comerciais, a temperatura de ponto de névoa não pode ser muito baixa, pois, em situações adversas, em que os produtos podem sofrer variações indesejadas de temperatura, os sistemas podem turvar, danificando os produtos. Nesse contexto, o presente projeto busca compreender as variáveis do sistema tensoativo não iônico e fragrância. Uma fragrância possui uma grande variedade de diferentes matérias-primas, evidenciando a complexidade do estudo desse problema. No presente trabalho, em uma primeira etapa, foram realizados vários experimentos da determinação da temperatura de ponto de névoa em diversos sistemas contendo apenas um aditivo de fragrância. Em uma segunda etapa, foram avaliadas as temperaturas de ponto de névoa de sistemas contendo misturas dos aditivos avaliados na primeira etapa, tornando os experimentos mais próximos da realidade de sistemas contendo fragrância. Por último, foram realizados alguns ensaios da determinação do ponto de névoa de sistemas contendo aditivos de fragrâncias com ureia e com o isopar-M, que são compostos que possuem a capacidade de aumentar a temperatura de ponto de névoa. A partir dos resultados obtidos, foi possível identificar importantes análises para auxiliar na resolução de problemas de estabilidade, como por exemplo, a identificação de matérias primas de fragrância que possuem melhores respostas para o isopar – M, e, a independência da relação entre a solubilidade do composto com o seu potencial de decair a temperatura de ponto de névoa. Nesse caso, foi identificado que moléculas bastante hidrofílicas possuem pouco impacto no CP (cloud point), entretanto, moléculas hidrofóbicas não possuem um padrão, e, para esse caso, a estrutura química da molécula dita o seu impacto no CP. Logo, foi identificado estruturas químicas que favorecem o baixo decaimento do CP.
The cloud point (CP) is an important stability criterion for products that have the nonionic surfactant as the main surfactant in their accommodation, as is the case with many products called “surface cleaners”. Unlike other classes of surfactants, non-ionic ones have a characteristic of decreasing their solubility when the temperature of the system increases, to the point that it becomes insoluble. The mist point temperature is very sensitive to the addition of other components to the system. For example, in the case of “surface cleaners” products, the addition of fragrances tends to reduce the temperature of the fog point. However, in several commercial products, the mist point temperature cannot be very low, because, in adverse situations, in which the products may suffer undesired temperature variations, the systems can become cloudy, damaging the products. In this context, the present project seeks to understand the variables of the non-ionic surfactant system and fragrance. A fragrance has a wide variety of different raw materials, showing the complexity of studying this problem. In the present work, in a first stage, several experiments were carried out to determine the mist point temperature in several systems containing only a fragrance additive. In a second stage, they were evaluated as a mist point correction of systems containing mixtures of the additives adopted in the first stage, making the experiments closer to the reality of systems containing fragrance. However, some tests were carried out to determine the fog point of systems containing fragrance additives with urea and with isopar-M, which are compounds that have the ability to increase the fog point temperature. From the results obtained, it was possible to identify important analyzes to assist in the resolution of stability problems, such as, for example, the identification of fragrance materials that have better responses to isopar - M, and the independence of the relationship between the solubility of composed with its December potential at fog point temperature. In this case, it was identified that the very hydrophobic molecules have little impact on the CP (cloud point), however, the hydrophobic molecules do not have a pattern, and, for this case, a chemical structure of the said molecule or its impact on the CP. Therefore, structures that favor the low decay of the CP were identified.
The cloud point (CP) is an important stability criterion for products that have the nonionic surfactant as the main surfactant in their accommodation, as is the case with many products called “surface cleaners”. Unlike other classes of surfactants, non-ionic ones have a characteristic of decreasing their solubility when the temperature of the system increases, to the point that it becomes insoluble. The mist point temperature is very sensitive to the addition of other components to the system. For example, in the case of “surface cleaners” products, the addition of fragrances tends to reduce the temperature of the fog point. However, in several commercial products, the mist point temperature cannot be very low, because, in adverse situations, in which the products may suffer undesired temperature variations, the systems can become cloudy, damaging the products. In this context, the present project seeks to understand the variables of the non-ionic surfactant system and fragrance. A fragrance has a wide variety of different raw materials, showing the complexity of studying this problem. In the present work, in a first stage, several experiments were carried out to determine the mist point temperature in several systems containing only a fragrance additive. In a second stage, they were evaluated as a mist point correction of systems containing mixtures of the additives adopted in the first stage, making the experiments closer to the reality of systems containing fragrance. However, some tests were carried out to determine the fog point of systems containing fragrance additives with urea and with isopar-M, which are compounds that have the ability to increase the fog point temperature. From the results obtained, it was possible to identify important analyzes to assist in the resolution of stability problems, such as, for example, the identification of fragrance materials that have better responses to isopar - M, and the independence of the relationship between the solubility of composed with its December potential at fog point temperature. In this case, it was identified that the very hydrophobic molecules have little impact on the CP (cloud point), however, the hydrophobic molecules do not have a pattern, and, for this case, a chemical structure of the said molecule or its impact on the CP. Therefore, structures that favor the low decay of the CP were identified.